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1 Early years

In 1984, a relatively obscure mathematician and computer scientist working
at NASA’s Ames Research Center in California noticed an interesting and
unusual article in the latest edition of SIAM Review [2]. Written by Jonathan
Borwein and Peter Borwein, it presented new “quadratically convergent”
algorithms for π, log 2 and various transcendental functions (sin, cos, exp,
log, etc). The article defined “quadratically convergent” to mean that each
iteration approximately doubles the number of correct digits, provided, of
course, that all computations are performed to at least the level of numeric
precision desired for the final result.

Intrigued, this mathematician immediately set out to write computer
programs to implement these algorithms, including the requisite software to
perform calculations to an arbitrary level of precision. After some effort, he
succeeded to calculate π, for instance, to roughly one million decimal digits.
He contacted Peter Borwein, then at Dalhousie University in Canada, who in
turn referred him to his brother Jonathan Borwein. The two Borweins then
sent this mathematician some new results, including the following algorithm:
Set a0 = 6− 4

√
2 and y0 =

√
2− 1. Then iterate, for k ≥ 0,

yk+1 =
1− (1− y4k)1/4

1 + (1− y4k)1/4

ak+1 = ak(1 + yk+1)
4 − 22k+3yk+1(1 + yk+1 + y2k+1). (1)
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Then 1/ak converge quartically to π: each iteration approximately quadru-
ples the number of correct digits (presuming as before that each iteration is
performed using a level of numeric precision at least as great as desired for
the final result). This mathematician immediately set out to implement this
algorithm on one of NASA’s supercomputers. Soon he succeeded in comput-
ing π to 29,300,000 digits, which at the time was the most ever computed.

Later this mathematician and the two Borwein brothers co-authored an
article on the underlying theory, published in the American Mathematical
Monthly. This paper, titled “Ramanujan, modular equations, and approx-
imations to pi, or How to compute one billion digits of pi” [3], was subse-
quently awarded the Chauvenet and Merten Hasse prizes of the Mathematical
Association of America. So began a very productive collaboration spanning
four decades, even though they only rarely met in person.

As the reader may have already guessed, this “relatively obscure math-
ematician” at NASA’s Ames Research Center was myself. I was awed at
the mathematical brilliance of the Borwein brothers, and more than willing
to offer my expertise in computational mathematics and high-performance
computing for various research projects suggested by the Borweins.

2 The BBP formula for pi

Although the majority of my subsequent collaboration with the Borwein
brothers was with Jonathan, I had the great privilege of one particularly in-
teresting collaboration with Peter. This began in 1995, when Peter Borwein
(then the Director of the Centre for Constructive and Experimental Mathe-
matics at Simon Fraser University in Canada) raised the following question:
Is it possible to directly calculate one or more digits of some common irra-
tional or transcendental constants, starting at a given position, any faster
than simply computing all digits up to and including the given position? In
other words, is it possible to peer, as with a telescope, into the high-order
decimal or binary expansion of some constant?

Peter quickly deduced a remarkable scheme that did just that for the
constant log 2 = 0.693147180559945 . . .. Recall Euler’s classical formula

log 2 =
∞∑
k=1

1

k2k
. (2)
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Given some position d, note that binary digits of log 2 beginning at position
d + 1 can easily be found by calculating frac

(
2d log 2

)
, where frac means

fractional part. This can be written as follows, after splitting the above sum
(2) into two parts:

frac
(
2d log 2

)
= frac

(
d∑

k=1

2d−k mod k

k

)
+ frac

(
∞∑

k=d+1

2d−k

k

)
, (3)

where mod k is inserted in the numerator of the first expression since we are
only interested in the fractional part after dividing by k. The exponentiation
2d−k mod k can be rapidly calculated by using the well-known binary algo-
rithm for exponentiation mod k; the second expression can be evaluated sim-
ply as stated, since its terms quickly become very small; and both expressions
can be summed using ordinary double-precision floating-point arithmetic (al-
though for large calculations quad-precision floating-point must be used to
counter round-off error). A computer implementation quickly confirmed that
it worked!

This immediately raised the question of whether a similar trick would
work for other well-known mathematical constants. What about π, Peter
Borwein’s favorite number? No such formula was then known for π. Si-
mon Plouffe, who had assisted Peter to this point, suggested that they do a
computer search, starting with a list of constants defined by formulas that
permitted the above trick, and performing an integer relation search, using
code that I provided that implements the PSLQ integer relation algorithm
using very high precision arithmetic. If some integer relation was found be-
tween these constants and π, then solving that relation for π would yield a
formula for π with the requisite property. The search was on!

After a few months of fits and starts, with additional constants added to
the list, Simon Plouffe’s program eventually found a relation, which, after
some algebra, yielded what is now known as the BBP formula for π:

π =
∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
. (4)

We included, in our joint paper [1], the results of using this formula to calcu-
late hexadecimal (base-16) digits of π starting at position 10 billion. Others
soon computed digits at more distant indices. The current record is hexadec-
imal digits of π starting at position 100 quadrillion, by Daisuke Takahashi,
who used a variation of the BBP formula due to Bellard [4].
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3 Later life

Shortly after the work on the BBP formula, Peter had some very disheart-
ening news: He had multiple sclerosis, a disease of the insulating sheaths of
nerve cells in the brain and spinal cord. While he valiantly continued with
his mathematical work, and remained a leader of the Centre for Constructive
and Experimental Mathematics at Simon Fraser University for some time,
there is only so much one can do with this increasingly debilitating affliction.

I visited Peter at his home in 2019. At this point it was very difficult
for him to function; he required nearly constant home health care. Yet he
remained cheerful and optimistic, asking about my family and research, and
about developments in the field. Even at the end, he was interested in the big
picture: how did all of these developments fit together, and what were the
prospects for the future of mathematics, computing and science? He died
not long afterwards, in August 2020, outliving his brother Jonathan, who
tragically died of a heart attack in 2016, by four years. Peter and Jonathan
were certainly among the greatest mathematicians of our time. The field
dearly misses them.
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